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Abst rac t

in this paper, wc investigate the statistical behavior of nonli]lcar  systems near stable
equilibria in the prcscncc  of additive white noise. In the case of certain carrier syn-
chronization loops, such as those that track a coml)ination  of suppressed and residual
carrier modulations or QAM modulation, it is known that the phase in the steady-
statc may lock at onc of several possib]c states, which in general arc not equiprobable.
To investigate the behavior of such nonli]lca.r stochastic systc][ns in a neighborhood
of a stable equilibrium point, wc consider a random realization of the state near an
equilibrium point (in the form of a stochastic observation equation) and wc analyze
the corresponding Zakai equation, whose solution is the probability density function
conditioned on the observation equation. We numerically SOIVC a Zakai equation corre-
sponding  to a, hybrid  loop previously proposed tc) track  a combinml  suppressed/residual
carrier signal. Motivated by questions regarding the performance of phase-locked loops
in the stcmdy-state, wc consider the cxistcncc  of a til~~e-i]~(lcl>clldcllt  equation, whose
solution is the steady-state probability density fu]lction (PIIF) of the systcm condi-
tioned  on the state (equilibrium point) which the system is locked on. Our approach
is based on a deterministic approximation to the behavior of a particular Zakai equa-
tion in the steady-state. In particular, wc show that asymptotic of the Zakai equation
(given that the state is continuously locked) can bc approximated by an infinite dinlcn-
sional  eigcnvalue  problcm,  where the eige]lva~ue  is a random ]mrturbation  of zero and
the eigenfunction  is the approximate l’1)11’  conditioned on the locked state. A detailed
analysis of this cigcnvaluc problem and a numerical procedul-e  for approximating the
desired conditional l’l)lr are shown. Numerical I csults  for the hybrid loop indicate
that the solutions to the cigcnvaluc problm agree with those obtained by numerical
integration of the Zakai equation.



1 Introduction

Carrier synchronization loops arc often  employed in cohcrcnt  co113TI]llllicatiolls  to provide a

phase-lockccl rcfcrcnce  in the rcccivcr. Some of the loops, such as the onc dcscribcd  in [1]

to demodulate Quadrature Almplitudcd  Shift Keyed (QASK) sig]lals,  exhibit multiple stable

lock poiIIts.  Another example is the hybrid  carrier and modulation tracking loop which is

used to trace a combination of suppressed and residual carrier modulation [2]. ‘I’l Ic latter

estimates the incoming phase using a weighted sum of the cstilnates  provided by a l’hasc

l,ockcd  loop (1’1,1,) and a Costas  loop to cnhancc the o~crall  pcrforlnance  and take advantage

c)f tlIc  total rcccivccl power,  be it in the toIlc  or the data,  sidcbal]ds.  In the analysis  of such

loops, it is often assumed that the loop locks at zcr[) phase error and no consideration is

given to the other lock points. The primary rcasoll  being that the theory to tackle the

analysis of stochastic systclns  with multiple lock points is not mature to the point where the

conditional phase error dcllsity (conditioned 0]1 a specific lock }mint)  can be derived. ‘1’hc

1~’okkcr-l’lanck  equation (F]’11)  provides only the combined density but not the conditional

densities, which arc nccdcd for a detailed analysis of the probal.)i]ity  of bit error and the

mean-squared phase error performance (phase filter) taking into account the various lock

points and their  rcspcctivc probabilities.

‘1’hc fundamental issue to be addressed ill this ~mper is as follows: Given a stochastic

diffcrcntia] equation (SI)E) whose deterministic part has multiple asymptotically stahlc cqui-

lihria,  dots there exist a decomposition of the solutiol]  to its associated IrI’l’; into a wcightecl

sum of conditional probability density functions (1’l)F),  where cac}l I’DF is conditioned on

the event that tJIc state is in a neighborhood of one of the equilibrium points? If this dccom-

postion  is possib]c,  then tlic weights represent the probability that  tllc solution to the S1)11

in steady state is in a neighborhood of the correspo]]ding  equilibrium point. Our approach

to this general question is based on numerical integration of the Zakai  equation [3]-[4]. Given

a set of observations of the state, the Zakai  ecluatiorl  provides us with  the I’I)F of the state

conditioned on the observations. At least numerically, the answer to the above question is

yes. in the case of certain carrier synchronization loops  SUC1l as tllosc mentioned above, it is

known that the phase in steady-state will lock at OIIC of several })ossiblc states. hfotivatcd
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by questions regarding the performance of the loop in steady-state, wc will consider tlic cxis-

tcnm of a tilnc-illclc~)cl~dcl~t  equation, whose solution is the I’l)lr of the phase in steady-state

conditioned on the state which the phase is locked on. Our approach to the second qucstio)l

is basccl  on a dctcnninistic  approxinlation  to a particular 7Jakai  equation in steady-state.

‘J’hc rcmailldcr of this paper procccds  as follows. Ill scctioll  2, wc sunlnlarizc  son~c basic

results on the Zakai  equation and its relation to the l“orward  Koln]ogorov  l;quation  (171<1;).

Wc will also discuss a numerical approxinlation  schenm  for tllc Zakai  equation which will bc

used in the subsequent. nunlcrica]  results. ‘J’he theory is then app]icd to the previously mcm

tioncd  hybrid  loop, which has two stable cquilibriunl  })oints. We will consiruct  a sequence of

observations of the phase while it is locked in cacl]  of the cquilibriunl  positions. Using each

sequence of observations separately, wc nunlcrically  il)tcgratc tllc Y,akai equation to obtain

two I’1)11’s which are conditioned on the locked state. Wc tl)cn  show that the nunlcrical

solution to the Y’])]?  (the steady state FKE) decomposes into a weighted average of the two

conditional PI)Fs. In section 3, We will show that the asymptotic of the Zakai  equation

(given that the state is continuously locked) can bc a})proxinlatcd  by an infinite dinlcnsiona]

cigcnvaluc prob]cm,  where the cigcnvaluc  is a. rando] n perturbation of zero and the cigcn-

function is the approxinlatc  PDF’ conditioned on the locked state. A nunlcrical  proccdurc

for approximating IJC desired conditional l’111~ is shown alollg  wit]l numcrica’

hybrid loop.

Z Basic introduction to the Zakai equation

results for the

In this paper wc arc prinlari]y  intcrcstcd in stochastic diflcrcntial  equations of the form

wllmw ~(t) is a vector  in lid, (d-din~cnsiona]  lluclidcan  space), f(. ) is a bounded continuous

function fronl  lid  into l-id, and n(t) is a white noise vector ill }1” wit]) power spectral nlatrix

Q. ‘J’lic  initial condition do is assunlcd  to have a knowli  l’1)1~  l{,(q!J). It is well-known that

the 1’1)1”  I’(#, i) of the process ~(i) is the unique solution to tl)c  classical FKI! [5]

&i, i) == L} ’(fh, t),
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whcm 1, is the Fokkcr-1’lanck  operator given by

(3)

wl~crc qij is the (ijj) clcmcnt of  the matrix QQ7’, and ji(~~) is tl)c  i~~ c o m p o n e n t  o f  t h e

vector ~(~). ltquation  (2) is posed with the condition that  the soluiion  bc integrable on ltd.

Suppose now that the process ~(t) is being observed. l,ct the observation process z(i) bc

givcll by

z(i) = h({}) 4- v(i), (4)

where h(.  ) and its derivatives arc bouncled  continuous functions fro]n  Itd to lt~, and v(i) is a

} ?~-valued white noise process indcpcndcnt  of 72(1) and ~0, Without loss of generality, wc may

assume that  v(i) has unit power spectral density. We seek a collditiona]  Pljl’  for the process

~(i) conditioned on the observation process {z(s) :0< s < i}. ‘1’his  conditional I’I)F is the

unique solution of the Zakai  equation, which is formally stated below. A detailed treatment

of the Zakai  equation can bc found in [3]-[4]. IIltuitivcly,  wc cxpccl,  the Zakai  equation to bc

a stochastic generalization of the FK13 since  it depends on tllc rarldom ohscrvation  process

z(t), in fact, the Zakai  equation is a linear stochastic partial differential equation (PI)E)

with nmltip]icativc  noise. Solvability theory for SUCI) equations cannot bc treated within

the framework of the detcr]ninistic  theory of I’I)E’s. llat}lcr,  ~)roper and rigorous t rcatlncnt

of the Y,akai equation must be done within the context of lto Calculus [5]- [7]. Some basic

results from Ito Calculus arc prcscntcc]  i]] Appendix A.

Following the trcatmcllt  in Appendix A, let II(i) bc a IIrow]liall  motion process. Wc

rewrite the state equation (1) ancl observation equation (4) in lto form (SCC Appendix A)

C@(i) = f(q$)dt +- dl~(i) , dY(i) = h((f))d -t- (-i\~(i), (5)

where dY(t) = z(i) dt, and V(i) is a Brownia]l  motion process illdcpcudent  of II(t) and q$o.

l“or llotational  simplicity only, wc assulnc  that Lotll  };(i) and V(t) have unit power spectral

~natricm.  ‘1’lic unnorma]izcd  conditional PDI°  of q!~(t) conditio]]cd  011 tllc observation process

Y(i) up to time i, which  will be denoted simply as }’(q+, t), is tllc  unique solution to the

Zakai  cquatiml
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A derivation of the Zakai  equation is skctchcd in Al)pclldix  11. ‘J’he Zakai  equation is typically

integrated nulncrical]y  with possibly discrctc observations. llcl(!,w cwillbricflyl  Ilclltioll  t he

Splittillg-up  method, which is explained in [4]. Wc assume a discrctc  c]bscrvation  process of

IJlc form

.z(?t) == h(~(??))  +- V(?z), (7)

where v(n) is white noise with unit  power spectral matrix. F’irst, wc usc a uniformly spaced

finite-diffcmncc scllcmc  on a finite grid to discrctizc  the spatial doll]ain.  Wc obtain a systcm

of stochastic differential equations of the form

(w(i) = L#(i)df +- B~l’(i)dY(t), (8)

where l’(i) = (l’l(i) , . ..l’N(t)) with l’i(t) denoting the conditional l’lllr at the grid point #i,

Lh is the matrix representation of the discretized  operator 1,, and }1), is a diagonal matrix

with )~(~i) in its diagonal. The splitting-up algorith]n  (using all ltuler backwards scheme)

for the numerical integration of the finite dimensional Zakai  equatiol)  (8) is given by

where l~(n) = IJ(in), and Wni.l  is a diagonal matrix with clemelits

(lo)

and At is the step size for the Euler schcmc. Equations (9)- (1 O) arc similar to the genera]

solution of a ol~c-dil~lcl~siollal  I to equation (SCC Appendix A). 14’cJr a hybrid loop [2], f(@)

takes the form ~(~) = –o sin(q$)  – /3 sin(2~).  WC used the Splitting-up scheme to integrate

the Zakai  equation (6) corresponding to this loop, which is governed by the S1)13

with the:  discrete observation process

z(n) = COS($J(?2))  + ?)(71).

‘J’his  }~rob]cln  was solved on the interval [--n, n] with periodic boundary  conditions and

with a = 0.2, and /3 = 1.0. Wc used spatial resolutic)n  Ah = n/1 (i and temporal resolution



At = 0.01. ‘1’hc hybrid loop has two points at which tllc phase locks (i.e., the system has two

asymptotical ly s table cclui]ibria),  ~~ == O and @ = 7r. ‘J’here is allotl]cr unstable cquilibriuln

point bctwccn the two stable ones W11OSC location is dctcrmincd IJy o a]ld /3. ‘1’o simu]atc  tllc

}JrOCCSS  of phase locking, wc initia]izcd the systcm  (and thus the observation process) near

the cqui]ibria.  ‘J)hc  initial distribution for the Zakai  equation was cclltcred Ilcar  7r/2. in h’ig.l,

wc show the solutions of the Zakai  equation at i =: 5000 (i.e., ill steady-state) conditioned

on the locked points. Also in Fig.], wc show the sollltion  to the l~l<l;  for t}lc same initial

conditions and same time. Again, the solutioll  to the FK1’; rcacllm a steady-state. Using a

least squares method, wc scdvccl  for two constants c1 and Cz SUCI1 that

P(4) = Cl I’O(@) +- C2J’*(4), (11)

w h e r e  1)(~), l~o(~), and 1~=(#) arc the steady state l]umcrica]  solut ions to  the FKl~;, t he

Zakai  equation locked at  # = O, and the Zakai  equa t ion  locked  at # = n- rcspcctivcly.

By IIaycs  theorem, c 1 and CZ arc the probabilities Lllat the phase in steady state locks at

@ = O  alld  @ =  T rcspcctivcly. Using the least squares values for c1 and C2, wc formed

fi(~) = cll+(!l’)  + c~l’r(~).  ~(q$) is also shown in Fig.]. Comparing j(~) with l’(~~), wc

can scc that the soluiion  to the 1~’1<1’}  decomposes into a wciglltcd  sum of the two conditiolla]

1’1111’s  obtained by solving the Zakai  equation. in principle, wc can obtain c 1 and  C2 by

evaluating equation (1 1 ) at any two fixed values of q$. IIowcvcl ‘, sillcc the conditional 1’1)1”s

were obtained numerically, wc used a least squares solution, which scc]m to bc very accurate.

3 Decomposition of the steady-state PDF into a weighted
sum of conditional PDFs

The Ilumcrica]  integration results in the previous scctitm  showed that tllc Zakai  equation can

track the 1’1,1,  systcm  as it bccomcs locked at onc of tllc cquilibriuln  points. We also showed

through numerical integration that for a fixed time (large enough to bc considered in steady -

statc)  the solution of the FK14; cau bc decomposed into the weighted sum of two solutions of

the Zakai  equation. There arc two issues which wc will now address. First, the solutions to

tllc Zakai  equation depended on the obscrvatio]l  process, which is OI]C particular realization of

tllc process d(t) with additive observation noise. %colld,  in practical applications, wc would



like to obtain a stcacly-state decomposition wit]lout  having  to integrate forward ill time. ‘1’bus,

wc seek a dccxnnposition  of tllc  1~’1’lt silni]ar  to that given for the l“1{l’; , and wc would like to

obtain the steady-state conditional 1’IJII’s  directly by solving a tilrlt!-illdcl~clldcllt  ccluation.

Our approach will bc general. ‘1’hat is, we consider stochastic dynamical systems W11OSC

deterministic part has a finite number of asylnptotica]ly  stable equilibrium states, and wc

will address the notion of a steady-state conditional 1’DF,  whcm wc condition on the event

that the state is in a neighborhood of an equilibrium }Joint.

]n the limit as the random pcrturbatio]ls  go to zero, the stochastic systcm behaves like a

deterministic onc [5]. in this case, the steady-state PI IF approacbcs  a sequence of impulses

ccntcrcd  at the equilibrium points. When the noise variance bccolncs relatively large, the

solution to tllc dynamical systcm jumps from on(! cquilibriurn  stat(!  to another. The corre-

sponding  steady-state Pl)l~’ approaches that of a uniform random variable. Most physical

systems lic somcwhcrc  in bctwccl]  the two (!xtrcmcs,  al]d in general the solution to the 1{’PE

has relative maxima at the cquilibriurn  states corrcs~)onding  to the deterministic part. in

principle, even if the noise variance is very small, tlic expected tlrallsition  time from onc

cquilibruim  state to another is fi~litc.  IIowcvcr,  if this expcctcd transition thnc among equi-

librium states is large cnougb,  such as in the case of t hc hybrid loop, then we may refer to

a conditional steady-state 1’1)1”,  conditioned on the event that ill steady-state the systcm  is

in a neighborhood of a specific equilibrium point.

For  simplicity only, wc consider scalar systems. More formally, consider the Sl)ll in Rl

given by

C@(i) = J($i)dt  + CU{(t), (12)

where the Wiener process d])(i) has unit power spcctl al density. \Vc assume that the corre-

sponding  deterministic systcm has m asymptotically stable equilibrium points {e l, . . . . cm,}.

‘1’hat is, ~(c~) = O and ~’(c~) <0 for k = 1,..., m. lx% 1}(~~) bc tllc solution to the associ-

ated 1“1’1? 1,1~ = O. ]n steady-state, wc assume that  the cxpcctcd  trallsition  tilne from one

lleigllborhood  of a stable equilibrium point to anothc]  is large cnougl]  such that the notion

of a steady-state conditional 1’1)1”  has physical recalling. 111 this case, we may define the

f u n c t i o n  }’~(~~)  = ]’(~1~  E ~(c~)), whcm! ~(eA.) is a Ilcighbor}lood  of ek. As a rcsu]t,  there
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exist constants CI, . . . . C,jl such that

711

1’(4)  == ~ (lJj(()), (13)
k=l

where c~ is Lhc probability of being in AT(c~) in steady-state. Our imlncdiatc  aim is to obtain

an approximate elliptic  partial differential equation for l’~(~). ‘1’0 this cncl, consider the

obscrvaiion  process ddincd by (7). ‘1’hc  corresponding difference equation for the conditiollal

1’1)1”  (with tl)c dcpcnclcnce  cm k suppressed) is giv(!n  IJY (9).

l,ct us assume that for some n su~cicntly  large, we observe tllc  systcm  in N(ck) (i.e. the

p]lasc  is locked at the point c~). ‘J’bus, wc may usc tllc approxinlation

q!(n) == Ck + ~(?t), z(n) = h(q + ((71))  +- v(n),

where ((n) is a random deviation of the state frcm the locked position, and v(n) is the

sequence of measurement noi S C, assumed to Ix an idd scquenc.e. in particular, the variance of

the mcasurclncnt  noise is assumccl  to lx of the order A (-t) (o(Af)) uniformly in n. Expanding

the observation process about f(n) we obtain

Z(?2 + 1) + z(n) = 2h(ck)  + h’(ei) (f(n)  + ((71 + I)) + V(?Z -1” I ) +“ ~(71) + o(f2(@)

which ilnplics  that

$(z(7z -+ ])+ z(n)) =  At  h(q)+  L,

where

A,, = : (U(Ck)(<(n) + ((n + I))+ V(TZ + I) + V(TI)) -t- @W)2)>

(14)

III the cllsuing analysis  we will be intcrcstcd  ill tllc  asymptotic. bel]avior  of the scc]ucmcc A,,.

]n particular, wc assume that A,, satisfies

where Var  (.) denotes variance, and o is a constant, w~]ich is o(Ai).  ‘1’o this end,  we note that

~,, depends on two random variables, ~(n) and v(n). The i id mcasurcmcnt  noise  scqucncc

v(n) is assumed to have a corresponding bounded scqucncc of varia.nccs,  where the bouncl

is uniform in 7?. ‘J’hc  other  random sequcncc is f(n), which is a small dcwiation  from an



cclui]ibriuln  poi]lt. If wc consider ~(n) as a salnpling  at time i,, of tllc continuous process

((t), and if wc assume that being locked at an equilibrium point, c~ ill stcacly-state implies

that ~;(~r(t)) is ncgligib]c  for some T > 0 and for arbitrarily lar~c  f, and if wc assume that

j is r – 1 times diffcrcntiablc,  then f(t) satisfies tllc S1)1’;

WhCrC  f(’’’)(j denotes the 771’” clcrivativc  of ~(”). ‘1’hc steady-state 1’1)1”  of ((i) exists and

can bc obtained by solving the associated 1“1’11. W C dcllotc  this distribution by g*(#).  ‘1’bus,

if g(~, t) is the 1’111” of ~(i), then

lim q$kg(+, t) = #~g*(q5),  for  al l  @ E R, allcl k = 1,2.
t—

( recall that g(~, i) and g*(@) have compact  support  on Ii). ‘]’bus, Ry the l)ominatcd

Convqyxlcc  ‘J’lIcorcIn  [8], wc have

which ilnplics  tl)at the scqucncc  of variances of f(t) convcrg;cnccs  to a finite constant as t

ap~)rocllcs iufinity.  As a result, if for n arbitrarily lalgc the systcm remains locked at the

equilibrium point c’, then An (in steady state) c.onvcrges to a ral]cloll]  variable ~ with variance

o(At). Note that other arguments can bc made which do not require any smoothness on the

function ~.

Substituting (14) into (10) and expanding the cxpcmcntial tcrln wc obtain

~,i =  CX~) (’At h(c~)h(#i) - $~h’(~i)~ (1 + o(At)).
\ .6

As a result, wc approximate the cliflcrcncc  equation for

(1 - A t  1,,,) l’,,+.l  = AF’n  -F

/

1’. by

&A}),,, (15)

wl]crc  A is a cliagonal  matrix with diagonal entries



IIy letting  n approach infinity in equation (1 5), wc scc that the cxistcncc  of a steady state

conditional 1’1)1” is equivalent to the statcmcl]t  that tllc following cc]uation  has a solution:

wl)crc  A is a random variable with o(Ai) varia]~cc. ]rrom this wcfina]lyohtain  thcstcady-

statc conditional 1’1)1~

A--l (1 –Ai I/)L --A)]’ = Al’. (16)

in principal, the cigcnvaluc  A corresponding to the cigcnvcctor  1’ is not known, cxccpt  wc

do know it has a variance which is o(At).  Fox the PI ,1, cxalnplc  of section 2, wc examined

the cigcnvalucs of the matrix A ‘-1 (1 – At 1,}, –- A) for different clloiccs of a and @ and for

At in the ral]gc 0.0001 < Ai <1.0.  WC found that the magnitude of the smallest eigenvaluc

is always o(At). We also found that this eigcnvaluc! is always negative. In fact, cigcnvectors

corresponding to positive o(Ai) cigenvalues  sometimes had negative components. Also, in

our numerical experiments, we found that the numerical solutions to equation (16) were not

sensitive to Ai. l“or the purpose of analysis, wc may set At := 1, even though in general At

may play an important role  in the numerical solutions. ‘1’hc  steady-state equation bccomcs

where Ai == 1 in tllc diagonal components of A .

in lrig.2,  wc show the normalized solutions to equation (17) for 1~(~)  = cos(~),  and A set to

the ncgaiivc  cigcnvaluc  with smallest magnitude. ‘1’hc results are compared to the solutions

to the Zakai  equation whicl] were obtained in section 2. ‘1’hc  results suggest that the resulting

cigcnva]uc  problcm is a good steady-state approximation to the c.or]dtional  1’I)F of the phase

~(i), conditioned on the state  at which the phase is locked. ‘l’his lJrovidcs  us with a possible

way to compute 1’. ‘J’lic fact that wc chose J to be the negative cigcnvaluc  with smallest

magnitude can  bc justified in the following way. First, wc k]]ow that its variance is o(Ai).

The fact that it should bc negative can be explained by cxamillillg the infinite dimensional

analoguc  of equation (1 7), which is given by tllc elliptic partial differential equation

g(dhf%)~~’(d) +“ (1 + A - 
g($f~, ck)) P(4)  “ 0, (18)

10



where 1. is tlIc  l~okkcr-1’lanck  operator defined in equation (3), and

g(d,  c~) == Cxp (;h’(~) -- ),(ck)h(q!j)  . (19)

Equation (18) can Lc posed  on a periodic domain or on a large but, fillitc  domain with zero

boundary conditio]ls  (i.e., since the solution is a Pl)I~,  it can be apl)roxinmtcd  by a function

with compact support). It is well-known froln  the tllcory  of paltial  diflcrcntial  equations

that a unique solution to equation (18) exists if zero is an cigcnvaluc  of the elliptic operator

l) = .q(~)l,  + (1 + A –g(~)). on the other hand, wc miiy also view tl]c solution of (]8) as the

asymptotic limit of the solution to the equation l;(t, ~)) = l~}>(i, ~)). l~or the latter ccluation

to have a classical solution in steady-state, it is required that the rate of change of the energy

$P’(W,2(0) bc nonpositive. ‘1’his  is cquiva]cllt  to to the collditicnl  < 1~1’, 1’  >I,2(Q)<  O f o r

all 1’ in C;(O) (twice-differentiable functions with cc)mpact  support on a bounded domain

fl), where < “,” >1,2(n)  denotes the 1,2 innerproduct  over 0. Note that

<  DP,l’  >L2(Q)=<  g(q$,  ck)lJ’,P  >L2(Q)  +  < (A +  1  ‘“ g(d~,  ck))P,  P >L2(Q)  .

Since g(~, Ck) is nonnegative and the Fokker-  l’lanck operator is dissipative (otherwise the

solution of l“’(t) = I, I)(i?) would not have a finite lilnit  in steady-state), then a sumlcicnt

condition for the dissipitiv;ty  of the operator l) is that A + 1 -– g(~, Ck) bc nonpositivc.  ‘J’o

illustrate this condition, consider the example of th(! hybrid  loop of section 2. A plot of

g(~~,  c~) with h(#) = cos(q$) is shown in Fig.3.  We can scc that 1 -- g(~, c~) can bc slightly

positive for both equilibrium points c1 == O and C2 = x . If A is, say, ICSS than –0.5, then l) is

guaranteed to Lc a dissipative operator. This is only a suficient  condition, but it illustrates

the problcm  that can occur if ~ is positive.

Although our analysis has km in the context of t}le hybrid loop example of section 2 with

h(d) = cos(~), the same results can be generalized to higher dinwnsions  and to any bounded

function h(q$). ‘1’hc  choice for h(~~) only affects the unllormalizcxl  1’1)1”. Ily examining g(d, ck),

wc scc that this is a parabolic function of h(~) which attains OIIC lnininmm  at h(ck)  and

grows exponentially as @ moves away from c~ (SCC  Fig.3).  As a I csult, wc can make scvcra]

more conclusions regarding cquat,ion  (18), W11OSC solution wc will I1OW call the (unormalizcd)

steady-state conditional 1’I)IJ (conditioned on the equilibruim  state). ]n particular, equation
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( I 8) can  IM v i e w e d  as a gcnmalization  of the Fokkel  -1’lallck e q u a t i o n .  ‘J’hc first  term in

cquatiol) (18) is given by

Sinccg(c~, c~) < < 1  anclg(#,  c~) >1  for~away froll~t:k,  tllediffllsioll  c.ocfflciel~t  (cocficic]lt

of tllc ljaplacian),  which is proportional to the power spectral matrix  of the stochastic per-

turbation,  is aticnuatcd  IIcar  ck and magnified away f] om ek. Expanding the second part of

9(#1 e~)~’~’(d),  wc obtain

‘1’hc cocmcicnt  of l’(~), which is g div -f, is called tllc growth  coefficient. If it is positive,

then it shifts the real part of the cigcnvalucs  of the dif~usion tc) the right  (indicating growth

in the solutions) and if it is llcgativc if shifts tllc real IJart  of tllc difrusion  eigenvalucs  to tl)e

left, which introduces damping to the solutions. Near the stable equilibria, the Jacobian of

J must have negative cigcnvalucs,  which implies that div ~ <0 (tllc trace of the Jacobian

of ~ is equal to div ~). ‘1’bus, multiplying div .f by g(q’~, ck) will ]nagnify  the damping of the

solutions away from ~k and attelluatc  the dan~ping  nc:ar ek. The advcction  coefficient (i.e.

the cocfilcicnt  of V}’) affects the rate at which initial conditions in an evolution equation

arc propagated. Its relative effect on the solutions near the stable equilibria is secondary

since ~ is close to zero in these regions, In gcllcral, multiplying the l“okker-Planck  operator

by g(@, c~) tends to make the corresponding solutions exhibit namowcr peaks near ek and bc

more flat away from ck. 111 particular, the rc]ative maxima near ot, hcr  equilibrium points in

the solutions of the ITI’; become flatter and closer to zero. ‘.l’hc dissipation of the solution

near the other equilibria is nmgniflcd  CIUC to tllc sccolld  term in cqua.tion  (18). ‘1’his  term is

(A+- 1-- g(q$, c!~))  r,

which csscntia]ly  acts as another dissipation term, wit]] the dissil)ation  magnified away fro]n

~k (wllcrc g(~, c~) is maximum) and negligible near c~. Again, solutions to equation (18)

exhibit furt]lcr decay as wc Inovc away from c~, particularly llcar  t llc other equilibria. q’bus,

the qualitative for]n  of equation (18) matcllcs the physical behavior wllicll OIIC expects froln  ‘

12



a. ccmclitiona] l’l)lr. In  pa r t i cu la r , numerical solutions to equation (18) agree with those

of tl]c  7,akai equation. 1 lowcnw, equation (18) was dmivml  froln  asymptotic analysis of a

particular approximation schcmc of the Zakai  cquatio]l  jn steady-stalm. IIowcver,  if wc had

used a forward l~ulcr scheme to discrctjzc  the Zakai  cq~latjon,  our asymptotic ana]ysjs  WOUIC1

have resulted jn cquatjon (18) as WC]]. Wc expect that any spatial discrctization  schcmc for

the Zakai  equation would yield an approximation to (18) j]] tllc limit as time approaches

infinity.

]“inally,  once wc have obtainccl l’~(d) by solving  wuatjon  (1 ~) ~~siw the nuIncrical  algo-

rithm jn this scctjon,  wc lnay  SOIVC for the coefficients ck by solving  the FPI’; for 1)(~)  and

by cva]uating  equation (13) at m djsthct  points  ~j. If wc combjnc tllc results of Fig.] and

Fig.2, wc can conclude that the constants Ck ol~taincd  llunlcri~ally  ~lsiw  ~hc sol~ltions  to the

Zakai  equation (SCC  scctjon 2) would bc the same obi  ained using illstcad the the solutions

to (18).

4 Conclusion

Ill this paper wc investigated the behavior of nonlinca]  stochmtjc.  systems in a ncjghborhood

of a stable equilibrium point. Wc derived a tilllc-illdc:~~elldcllt  equation for the conditional

I’I)F of tllc state conditioned on a given stable cqujlibrium  point,. WC further cstabljshcd

the methodology using a hybrid synchronization loop. l’hc results  ill this paper colltinuc  to

IIold in the case of multiplicative noise with o]lly mjnor  modifications to the Fokkcr-1’lanck

equation. in particular, the asymptotic analysis of tl~e Zakai  cquaticm  remajns  essentially

unch  angcd.
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Appendix A
Basic results from Ito Calculus

Wc begin with a formal  dcfillition  of a probability spat.c. Consider an cxpcrimcllt  E

whose outcomes arc clcmcnts  of a sample space Q. Let F bc a sig;n m-field (set of all possible

sets) of observable events, and let P bc a probability I ncasure  dcfi]lcd  on the sets  of F. Wc

can think of T as an abstract  rcprcscntation  of a clistlibutio]l  fullc.tioll  1“ characterizing the

cxperilncnt  1~. ‘J’hc probability space associated with the cx)mrimcllt  II will he dcnotccl  by

(0, %, ~). For the same experiment l!!, wc may define another probability space, (Q, Y_, 7+),

w]lich is related to the original space by the relation d}’’(x) = p(x)dl’i  (x), where F+ is the

distribution function associated with 7+, and p is called the Radon-Nykodym derivative of

~ with respect to ~~. Roughly speaking, switching from OIJC probability space to another

anloullts  to making a change of variables. For cxan]ple,  for ally set in A E f, wc h a v e

[Chullg]

]n order to define  a stochastic differential equation, we would typically IIccd a time-dependent

probability space of the form (0, .F~, 7)0 For example,  let  II(t) bc a Ilrownian  m o t i o n

such  tha t  d])(t) = n(i) di, where  n(i) is a white IIoise process [  ] .  Wc may let  .Tt bc

the sigma-field gcncratcd  Ly the trajectory of B(s) llp to time i. Symbolically, wc write

.T~ =- a (11(s)  :0 S s < t). In  th i s  case , a function will bc called .Tt-nlcasurable  if it is a

function of the trajectory B(t). l’or such functions, wc define the lto integral as follows: l,ct

(iO, i,, . . . . t,,) be a partition of the interval [0, i] where t/?z = t~ - ik-l.  ‘J’hcn the Ito integral

of a .F~- ]ncasurable function g(t) is defined as

(A.])

whcncvcr  the sunlma~ion converges in the mean-square-sense. W C Ilote  here that the limit

of tllc  sum depcllds  on the fact that g(s) is sampled at tk (as opl)oscd  to anywhere in the

intcrva]  [tk, ~k~.1]).  ‘J’his  diflcrs  from the usual  dCfillitiOIl  of recall-square convergence, where

the limit dots not depend on where g(s) is sampled. l’or a discussion on this subject, see [
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]. For l)(t) as almvc, wc may  ddinc  the s tochas t i c  int<:gra]  cquatio,,

4(,) =Al+/’mwc2s-l  /tg((#)[s)dB(s),o 0
(A.2)

whmc the first integral is defined as a mean-square Ricmann Sticltjcx  intcgra] in the usual

sense [ ], and tllc second integral is an Ito integral ill the sense of equation (A. ] ). Symbolically,

the intcgra]  equation is writcn as a differential] equation in tllc lto form

If j(~) = fo(i)q$(i)  (i.e. ~(~) is linear in ~) and g(~) := go~(t) where go is constant, then in

onc dimension the general solution to (A .2) is given by

$+(i) = (#JO exp (/ )‘ f(s)ds + go]](i) -$ .
0

(A.4)

An inlportant  result in Ito (lalculus  is Ito’s  I,cmma.  in onc-dimcrlsion,  it states that  if u is

a smooth function of ~, then

(A.5)

Equation (A .3) can bc gcncralizccl  to stochastic systems in It’”, where it is often cxprcsscd

as as

du(q$(t))  = I,”u(q$(i))dt, (A.6)

w}~crc I,* is the adjoint of the Fokkcr-1’lanck  operator with respect to the 1.2 (R’i) inncr-

product. An important corollary of lto’s lernlna is t})c product rule for two soluiions  to Ito

diffmcntial  equations. l,ct ~(i) and y(t) satisfy

w h e r e  111 (t) and l~2(i)  arc i n d e p e n d e n t  Brownian nlotion  proc.csscs.  Id z(t) = x(i)y(i).

“J’hcn z(i) satisflcs the lto differential equation
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Appendix B
!Ehmmary of the Zakai equation

Following the tmatmcnt  in the Appendix A, let (Q, .T, T) Ix> a probability space, let

II(i) lx a IIrownian  motion  process, an d let .?; be the sigma- fic]d generated by the process

B(t). Wc assume that & c F for each t. On (Q, .?-, T’), wc co]]sidcr  the state equation and

observation equation in lto form

d+(i) == f((j)ch +- m(i) , dY(i) = h((j)d  + W(i), (11.1)

where V(i) is a ]Jrownian motion process indcpendellt  of IJ(i) and ~~o. l~or notational sinl-

plicity  only, wc assume that,  both II(t) and V(i) have unit cova.rianccs.  It is assumed that Yt,

the siglna-fic]d  gcncratcd  by the process Y(t) up to ti]nc i, is contained in .Tt. Our aim is to

sketch the derivation of the Zakai  equation, whose solution is l’(~j,  tl~t), the unnorma]izcd

conditional Pl)l’ of ~(t) conditioned on the observation process

denote this function simply as l’(~, t). Thus, for any infinitely

u(~), wc have

Y(t) up to time i. We will

dificn-cntiable  test function

(11.2)

‘J’O obtain the desired equation, we bc.gin by il~troducing  a ncw probability space (Q, ~, ~~- )

such tl]at under 7+-,  the state process is statistically unchanged, but Y(i) bccomcs a Wiener

process indcpcndcnt  of B(t). ‘1’hc ncw space is related to the original space by the relation

(SCC Appendix A) dl’(~) = p(~, i)dl’’(~),  wl,crc F and X’+ arc the associated distribution

functions, and o(4, i) is the lLadon-Nikodym  derivative of P with respect to ~+ given by

p(cj,  t) == exp (J’ h“(f@))dY(s)  -- 1/2 J’ [h(fl)(s))l’dY(s))  . (1;.3)

In particular, for any test function u(q$), wc have the following relation:

,

where c is a normalization constant. Using lto’s lemma (SCC! Appendix A), it can bc shown

that p(~, t) satisfies the ccluation

dp(qfjt)  ~ /l(q!), qhqf#(i))dY(i). (11.5)
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Also by Ito’s  Immma, u(~(i)) satisfies the stochastic differential equation

w h e r e  1,”’ is Lhc adjoint  of  the Fokkcr-1’lanck  opcrat,or 1, with rcspcc.t  to the 1.2(lt’” ) in-

ncrproduct  (SCC Appendix A). On I,hc space (fl, .?:, T+), Y(i) is a Wiener process. ‘1’bus,

cquatio]l  (11.5)  is an lto diffcrcntia] equation for p(~, i). On the other hand, since Y(i) is

indcpcndcnt  of }](t), wc may apply the product, rule (SCC Appendix A) to obtain a differential

equation for d(p(~, t)u(~~(i)).  This is perhaps onc of tile most crucial steps in the derivation

(SCC [ ]). It was facilitated by the fact that on (0, f, 7+), }’(1) and l](t) are indcpcndcnt

Wiener proccsscs. This motivates why wc use this probability space instead of the original

one. After expressing the differential equation for d(p(~, i)u(~(t))  in integral form, wc apply

~;+(.[~t)  to obtain

l;+ (u(q!(i))p(~,i)p~)  == h’+(u(&l)/-)(@,o))  + Jt E’ (L*[u((#)(s))]/7 (#(s), S)ly.) (is (1).6)

+ J’ L’+- (hqu(#,s) )/2(ff@))lYs)  ~y(s).

Using tl]c  equality in equation (11.4), wc can scc that cquatioll  (13.6) is cquiva]cnt  to

+~~t < ~~i(~)~(d,s),~  > ‘K(s),
:=1

 0

where < ., . > denotes the 1/2 (lid) inncrproduct. Fi]lal]y,  ccluatlion  (11.7) is the variational

form of the Zakai equation

(W(q’),  t) == LP(#, i)di + I’(@, i)}l~’(#)dY(i), P((j, o) == RJ(o), (1].8)

where 1, is the Fokkcr-1’lanck  operator given in (3) of scctioll  1. Note that if there arc no

observat ions,  tllcn Y(t) is zero and the Zakai  cquatic)n  rcduccs  to the Forward Kolmogorov

equation.
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